APPENDIX A: COMPLETE STREETS CHECKLIST

The evaluation criteria outlined previously will be used to identify roadway facilities that would be most suitable for complete street treatments. In order to determine what types of complete street elements may be appropriate for a given roadway, the design checklist is provided to help prioritize individual treatments and further guide policy and funding decisions. This checklist can be used by developers and regional and local jurisdictions to identify suitable ways to incorporate complete street design into a project or roadway facility.

The checklist will compile information on land use and context, existing and future operating conditions, adopted plans and policies, community, and safety of a given roadway facility. This information is then used to determine which elements may be suitable for that facility and give appropriate guidance on how these elements may be best accommodated.

The checklist may also be used for roadway facilities not recognized as candidates for complete street treatments according to the evaluation criteria but may benefit from certain complete street elements. For these facilities, the checklist can provide guidance on how to best accommodate all users within that context.
Context and Function

Land Use Context and Demand

What are the predominant land uses in the area? What trip generators (existing and future) in the area that may attract walking, bicycling and transit users?

Example generators may include parks, public facilities, educational institutions, high density land uses, downtowns, shopping areas, and medical centers among others. Resources may include local comprehensive plans, specific plans, and redevelopment plans.

Facility Attributes

What is the available right-of-way? How has the allocation of ROW been prioritized among the various modes?

Identify existing accommodations for transit, bicycles and pedestrians. Measure lane widths, available right-of-way for complete street improvements and other roadway design attributes.

What existing challenges would the proposed project address for transit, bicycle and pedestrian access?

Identify existing challenges facing bicycles, pedestrians and transit users, including inconvenient lane configurations, fast vehicle speeds, lack of pedestrian crossings, narrow or missing sidewalks, and long signal cycles, among others.
Function

What is the function, role and classification of the roadway in the transportation network?

Identify the functional classification of the project. Identify the design vehicle, LOS standards, and role of the roadway. Functional classifications may include local, collector, or arterial. Identify truck routes in the project area.

What pedestrian, bicycle and transit connections does the roadway provide?

Identify major pedestrian, bicycle and transit connections provided by the roadway. Is the roadway the primary connection between destinations?

Connectivity

How is the facility connected to the surrounding transportation network?

Analyze the street network surrounding the project area. Are surrounding streets well-connected to enhance bicycle and pedestrian access?

Crashes

Is there a high amount of crossing activity that occurs? What is the accident history along the facility?

Consult available Nevada Department of Transportation (NDOT) data to identify crash hot spots involving pedestrians, bicycles and transit.
In the project design, how have you considered crashes involving bicycles, pedestrians and transit along the facility?

Resources consulted may include: Nevada Department of Transportation (NDOT) crash data, local police data, and history of complaints from pedestrians and bicyclists.

Operations

Transit

Is the roadway on the existing or planned transit network? What connections are available to the larger transit network?

Work with RTC to identify existing and planned transit in the project area. Identify transit connections through the project area to major destinations in the area.

Examples: peak frequency, span of service, ridership, capacity

What is the existing amount of transit activity along the roadway?

Examples: bus bulbs, bus shelters, streetscape improvements, real-time bus arrival information, transit only lanes, and signal priority for transit.

What accommodations, if any, have been considered to enhance transit access in the project area?
Bicycling

What existing or planned bicycle facilities are provided in the project area? What connections are available to the larger bike network?

What accommodations, if any, have been considered to enhance bicycle access in the project area?

Will the proposed project hinder bicycle movement?

Walking

What existing or planned pedestrian facilities are provided in the project area? What is the existing and projected amount of pedestrian activity in the project area?

Identify existing and planned pedestrian facilities in the project area. Is there a high level of pedestrian activity in the project area? Will future land uses and improvements support additional pedestrian activity? Is there latent demand for pedestrian facilities in the project area?
What accommodations, if any, have been considered to enhance bicycle access in the project area?

Examples: sidewalks, crosswalks, bulb-outs, street furnishings, pedestrian-scaled lighting, and street trees/landscaping.

Will the proposed project hinder pedestrians?

Examples: roadway widening (increases pedestrian crossing distance), longer signal lengths, crosswalk removal, eliminating existing pedestrian facilities.

Vehicles

What are the existing and projected roadway volumes and capacity for vehicles?

Identify existing and projected roadway volumes and capacities for vehicles. If volume-to-capacity ratio is below 0.6, provide an explanation for why excess capacity is provided.

What is the vehicle speed of the roadway?